Accuracy of DLPNO-CCSD(T) method for noncovalent bond dissociation enthalpies from coinage metal cation complexes.

نویسندگان

  • Yury Minenkov
  • Edrisse Chermak
  • Luigi Cavallo
چکیده

The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu(+), Ag(+), and Au(+) complexes. For 33 Cu(+)-noncovalent ligand dissociation enthalpies, all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag(+)-noncovalent ligand dissociation enthalpies, the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au(+)-noncovalent ligand dissociation enthalpies, the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined data set of 72 coinage metal ion complexes, DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kcal/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates affordable for routine calculations (single-point) on large transition metal complexes of >100 atoms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation.

In this work, we tested canonical and domain based pair natural orbital coupled cluster methods (CCSD(T) and DLPNO-CCSD(T), respectively) for a set of 32 ligand exchange and association/dissociation reaction enthalpies involving ionic complexes of Li, Be, Na, Mg, Ca, Sr, Ba and Pb(ii). Two strategies were investigated: in the former, only valence electrons were included in the correlation treat...

متن کامل

Benchmark interaction energies for biologically relevant noncovalent complexes containing divalent sulfur.

Molecules containing divalent sulfur can participate in significant noncovalent interactions. Computing accurate noncovalent interaction energies using ab initio quantum chemical methods requires a proper description of electron correlation effects. Coupled-cluster theory with single and double substitutions and perturbative triple substitutions, CCSD(T), using extrapolation to the complete bas...

متن کامل

Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections.

In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Pr...

متن کامل

No-pair bonding in coinage metal dimers.

High-level ab initio calculations at the coupled cluster with single and double substitutions and perturbative treatment of triple substitutions, CCSD(T), level of theory have been carried out for the dimers of coinage metal atoms Cu, Ag, and Au in the ground 1Sigma(g)+ state and in the excited 3Sigma(u)+ state. All of the calculations have been carried out with the inclusion of scalar-relativi...

متن کامل

H2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research

Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2015